

ACCELERATING THE PACE OF CHANGE

WCN 2019 XXIV WORLD CONGRESS OF NEUROLOGY DUBAI, UNITED ARAB EMIRATES, OCTOBER 27-31 2019

Identifying Prognostic Factors

Ron Milo, M.D.

Department of Neurology Barzilai Medical Center, Ashkelon Ben-Gurion University of the Negev ISRAEL

University Medical Center

Disclosures

- Honoraria/consulting fees: Actelion, Bayer Healthcare, Biogen-Idec, Genzyme, Medison, Merck-Serono, Neopharm, Novartis, Roche, Sanofi-Aventis, Teva and TG-Therapeutics
- Advisory board: Bayer Healthcare, Genzyme, Medison, Merck, Neopharm, Novartis, Roche Teva and TG-Therapeutics
- Research grants: Bayer Healthcare, Medison, Merck-Serono, Novartis and Teva

Learning objectives

- Recognize risk factors for MS
- Identify prognostic factors for poor prognosis early in the course of MS
- Consider prognostic factors in the treatment decision-making process

Natural History of MS

Noseworthy et al. N Engl J Med. 2000;343:938; Weinshenker et al. Brain. 1989;112:133; Trapp et al. Curr Opin Neurol. 1999;12:295.

MS takes a highly variable course

MS takes a highly variable course

Important to consider:

- Risk factors that put individuals at increased risk of developing the disease
- **Prognostic factors** that may predict a patient's disease course (disease progression and disability)

Prediction is very difficult, especially about the future.

--- Niels Bohr, Book of a Thousand Days

MS is a complex disease

Adapted from: Oksenberg, J. R. & Baranzini, S. E. (2010) Multiple sclerosis genetics—is the glass half full, or half empty? *Nat. Rev. Neurol.* doi:10.1038/nrneurol.2010.91

Genetic risk factors

- worldwide prevalence of familial MS is 12.6%¹
- Strongest genetic susceptibility factors- HLA DR*2 (in Caucasians)² (other HLA loci in Mediterraneans)
- Additional >233 susceptibility alleles, mostly in immune system related loci^{3,4}

Environmental risk factors for MS⁵⁻⁷

- EBV infection
- CMV infection
- Low vit. D
- Smoking
- Obesity
- Latitide/UV radiation
- Diet (NaCl, alcohol, coffee...)
- Gut microbiome
- Chemicals/pollutants
- Shift work

Rothhammer & Quintana. Curr Opin Immunol 2016;43:46–53

Most factors seem to have the greatest effect during adolescence

Prognostic factors

Epidemiologic factors

- Age
 - Older age at onset is associated with a more rapid progression⁸
 - Mean time to an EDSS score of 6 decreases as age of onset increases⁹
- Sex/Sex hormones (controversial)
 - Male sex might predict worse outcomes in RRMS and SPMS⁸
 - Multiple pregnancies may be protective¹⁰
 - Oral contraceptives \rightarrow a milder course in RMS¹¹
 - Total free testosterone/Estradiol ratio¹²

Lifestyle factors

Smoking

- Heavy smokers have higher chance of developing MS than never smokers¹³
- Smoking RRMS patients progress faster to SPMS (HR=2.5) than non-smokers¹⁴
- Smoking is associated with increased MRI Gd+ number (*P*=0.002) and volume (*P*=0.014)¹⁴
- Ex-smokers have slower disease progression than current smokers¹⁵

Other habits

 Consumption of alcoholic beverages, coffee, and/or fish is associated with a milder disease course in RMS¹⁶

Low vit. D is a risk factor as well as a prognostic factor in MS

Characteristics of initial attacks

- Type (motor, sphincter or cognitive), location (cerebellum, brainstem, SC) and number of systems involved^{8,9,17-19}
- Incomplete recovery^{9,18-21}
- Shorter interval between the first and second attack^{8,17,18,20,22}
- Frequent attacks years 2-5^{8,17,18,22,23}
- Poly-symptomatic (multifocal) relapses^{17,21}
- Early vs. late attacks²⁴

Weinshenker BG, et al., Brain 1989

Stratification based on the number of relapses in first 2 years

Other clinical predictors

- Early accumulation of disability^{8,17,19}
- PPMS course^{17,18,25}
- Early secondary progression²⁶
- Chronic depression²⁶
- Cognitive impairment²⁶
- NEDA status⁴³
- Vascular risk factors
- Comorbidities
- No previous treatment

Disease course

PPMS Course

Early conversion to SPMS

Time from the Onset of MS to EDSS=4

25. Confavreaux C, et al. Relapses and progression of disability in multiple sclerosis. *N Engl J Med.* 2000;343:1430-1438

30. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. *Mult Scler*. 2014;20:220-226.

Depression

Cognitive impairment

26. Bsteh G, et al. Long term clinical prognostic factors in relapsing-remitting multiple sclerosis. *PLoS One*. 2016;11:e0158978.

Pitteri M et al. Cognitive impairment predicts disability progression and cortical thinning in MS. MSJ 2017;23:848-54

0

sCl

NEDA Status

Multifactorial predictors of NDOs 16 years after randomization to the pivotal IFN beta-1b clinical trial in RRMS

BOD: burden of disease; EDSS: Expanded Disability Status Scale; NDO: negative disability outcome; NEDA: no evidence of disease activity

43. Goodin DS, et al. Predictive validity of NEDA in the 16- and 21-year follow-up from the pivotal trial of interferon beta-1b. Mult Scler. 2019;25:837-847

NEDA is difficult to sustain long-term even with treatment (only 17 of 216, \approx 8%) maintained NEDA status after 7 years.

RESULTS <u>A total of 99 of 215 patients (46.0%) had NEDA for clinical and MRI measures at 1</u> year, but only 17 of 216 (7.9%) maintained NEDA status after 7 years. No differences were found in NEDA status between patients with early vs established MS. A dissociation was found between clinical and MRI disease activity. Each year, 30.6% (64 of 209) to 42.9% (93 of 217) of the cohort had evidence of either clinical or MRI disease activity but not both. NEDA at 2 years had a positive predictive value of 78.3% for no progression (Expanded Disability <u>Status Scale score change ≤ 0.5) at 7 years.</u> Only minor improvement was found in the positive predictive values with additional follow-up of 1 to 3 years.

Rotstein et al JAMA Neurol 2015

fatigue

Table 2. Multivariate logistic regression analysis of the association between fatigue and conversion to sustained EDSS ≥ 3 (converters = 1, non-converters = 0).

Predictor	Standardized regression coefficient	95% CI	<i>p</i> -Value
MFIS	4.34	1.42-16.93	0.009
EDSS	3.58	1.67-9.40	0.001
CES-D	1.43	0.40-5.39	0.568

CI: confidence interval; MFIS: Modified Fatigue Impact Scale; EDSS: Expanded Disability Status Scale; CES-D: Center for Epidemiological Studies Depression scale; SD: standard deviation.

In order to compare the effect of predictors measured by different scales on the conversion to sustained EDSS \geq 3, the coefficient referring to MFIS, EDSS, and CES-D is expressed as standardized regression coefficient, that is, odds ratio per SD increase in the predictor (SD of total MFIS, EDSS, and CES-D scores across all subjects: 17.3, 0.8, and 6.9, respectively).

Comorbidities

Physical

Psychiatric

Factors

No. of comorbidities	Coefficients and 95% Cls	Coefficients and 95% Cls
Unadjusted findings		
British Columbia	0.54 (0.41, 0.66)	⊢
Nova Scotia	0.69 (0.56, 0.81)	
Overall	0.61 (0.46, 0.76)	
Test for heterogeneity: $\chi^2=2.76$	5, df=1, p=0.10	
Adjusted findings		
British Columbia	0.15 (0.01, 0.29)	
Nova Scotia	0.21 (0.08, 0.35)	·+
Overall	0.18 (0.09, 0.28)	⊢

Test for heterogeneity: $\chi^2=0.40$, df=1, p=0.53

Table 3 Association between depression, anxiety, and bipolar disorder and neurologic disability, as measured by the Expanded Disability Status Scale in the multiple sclerosis population (British Columbia and Nova Scotia; results combined using meta-analyses)

								· · · · · · · · · · · · · · · · · · ·	
		Model 1	3		Model 2 ^t	b		Model 3 ^c	
Variable	β	SE	p Value	β	SE	p Value	β	SE	p Value
Depression									
Intercept	1.94	0.12	<0.0001	0.31	0.14	0.0287	0.37	0.18	0.0366
No depression (ref)									
Depression	0.22	0.08	0.0039	0.25	0.08	0.0015	0.24	0.07	0.0010
Anxiety									
Intercept	1.92	0.04	<0.0001	0.36	0.14	0.0134	0.41	0.15	0.0072
No anxiety disorder (ref)									
Anxiety disorder	0.06	0.08	0.4740	0.11	0.09	0.1842	0.11	0.08	0.2055
Bipolar disorder									
Intercept	1.92	0.05	<0.0001	0.38	0.14	0.0085	0.43	0.16	0.0080
No bipolar disorder (ref)									
Bipolar disorder	0.32	0.17	0.0592	0.30	0.17	0.0721	0.29	0.17	0.0808

^a Adjusted for disease duration.

^b Adjusted for disease duration, age at onset, sex, socioeconomic status, and disease course. ^c Adjusted for disease duration, age at onset, sex, socioeconomic status, disease course, disease-modifying therapy use, and physical comorbidity count.

Zhang T et al. Effects of physical comorbidities on disability progression in multiple sclerosis Neurology 2018;30;90(5):e419-e427

McKay KA et al. Psychiatric comorbidity is associated with disability progression in multiple sclerosis. Neurology 2018;90(15):e1316-e1323

Other clinical predictors

- Early accumulation of disability^{8,17,19}
- PPMS course^{17,18,25}
- Early secondary progression²⁶
- Chronic depression²⁶
- Cognitive impairment²⁶
- NEDA status⁴³
- Comorbidities
- Vascular risk factors

MS = Brain loss Time = Brain

* ** MS = Time-dependent brain loss

Imaging factors

- T2 lesion count and volume in the first 5 years²⁷⁻²⁹
- Location: Cortical, posterior fossa or spinal cord³⁰⁻³²
- Gray matter involvement and atrophy^{33,34}
- Atrophy: Thalamus, spinal cord, CC, brain^{31,35-41}
- Gd enhancement⁴²
- Chronic black holes⁴⁴
- OCT^{45,46}

T2 lesion count and volume in the first 5 years

Brex, NEJM 2002

T2 lesion volume: 5Y FU of 84 pts with CIS

MRI at presentation	Conversion to CDMS	EDSS > 3
Normal	2/32 (6%)	0/32
Abn <1.23 cc	17/31 (55%)	7/31 (32%)
Abn >1.23 cc	19/21 (90%)	11/21 (52%)

Lesion location

Tintore et al Neurology 2010

Spinal Cord

Sombekke et al Neurology 2013

Cortical lesions

Calabrese M et al. Arch Neurol. 2007

Cortical Lesions and Atrophy Associated With Cognitive Impairment in Relapsing-Remitting Multiple Sclerosis

Massimiliano Calabrese, MD; Federica Agosta, MD; Francesca Rinaldi, MD; Irene Mattisi, MD; Paola Grossi, PhD; Alice Favaretto, MD; Matteo Atzori, MD; Valentina Bernardi, MD; Luigi Barachino, RT; Luciano Rinaldi, MD, PhD; Paola Perini, MD; Paolo Gallo, MD, PhD; Massimo Filippi, MD

Cortical atrophy and cognition in early RRMS

Gray matter damage

Table 2. Demographic, clinical and adjusted^a BL MRI volumes (as percentage of whole-brain volume) of 241 RRMS patients, and of the four subgroups: RR \rightarrow RR, RR \rightarrow SP, EDSS < 4 and EDSS > 4.

	Mean (range)	SD	Median	RR→RF	R n = 199	RR→SP	9 n = 42		EDSS < n = 135	4	EDSS >	4 n = 73	
				Median	IQ ranges	Median	IQ ranges	Þ	Median	IQ ranges	Median	IQ ranges	Þ
RR <i>n</i> = 241													
Age at FU	44.4 (22–77)	9.1	44	34	28–40	38	30–47	0.021	33	27–39	37	31-44	0.003
Age at onset	27.3 (13–54)	8	26	26	21-33	26	21-35	0.755	25	21-31	26	22-34	0.424
AWM-f	1.2 (0–9.61)	1.6	0.6	0.6	0.2-1.4	1.4	0.3-2.6	0.002	0.6	0.1-1.2	1.2	0.3–2. l	0.005
CSF-f	14.9 (5.8–33.4)	4.7	14.4	13.9	11.2-16.4	17.1	13.3-20.9	< 0.001	13.7	10.9-16.2	16.0	13.6-20.0	< 0.001
GM-f	51.4 (39–58.2)	3.1	51.7	52.I	49.9–53.7	49.8	47.7–51.9	< 0.001	52.4	50.5–54.5	50.3	48.3–52.2	< 0.001
BL EDSS	2.3 (0-4.5)	1	2	2	1.5-2.5	3.3	2.5-3.5	< 0.001	2	1.5–2	2.7	2–3	< 0.001
DD at BL	8.5 (1–35)	6.5	7	6	3–11	7	5–15	0.0613	6	3–10	8	5–16	< 0.001
DD at FU (years)	17.4 (10–44)	6.4	15	15	12-20	6	4-24	0.1021	15	12-19	17	13-22	< 0.001

BL: baseline; MRI: magnetic resonance imaging; RR: relapsing-remitting multiple sclerosis; SP: secondary progressive; SD: standard deviation; FU: followup; AWM-f: abnormal white matter fraction; CSF-f: cerebrospinal fluid fraction; GM-f: gray matter fraction; EDSS: Expanded Disability Status Scale; DD: disease duration; IQ: interquartile. ^aAdjusted for age, gender and education.

"Conversion from RR to SP (OR 0.79; CI 0.7–0.9), progression of EDSS (OR 0.85; CI 0.77–0.93), achievement of EDSS 4 (OR 0.8; CI 0.7–0.9), and time to reach EDSS 4 (HR 0.88; CI 0.82–0.94) were all predicted by baseline gray matter volume"

30. Lavorgna L et al. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. *Mult Scler.* 2014;20:220-226

Gray matter atrophy

Correlations of brain volume measurements with clinical features

	rs (p)							
	EDSS (n = 73) ^a (44 ^b)	MSFC (n = 67) ^a (41 ^b)	Z-PEG (n = 70) ^a (42 ^b)	Z-WALK (n = 68) ^a (40 ^b)	Z-PASAT (n = 68)ª (42 ^b)			
GMF ^a	-0.48 (<0.001)	0.56 (<0.001)	0.59 (<0.001)	-0.40 (0.001)	0.27 (0.026)			
GMF⁵	-0.41 (0.005)	0.55 (<0.001)	0.44 (0.003)	-0.49 (0.001)	0.32 (0.038)			
WMF ^a	-0.20 (0.086)	0.03 (0.784)	0.16 (0.176)	-0.11 (0.337)	-0.07 (0.537)			
WMF ^b	-0.11 (0.443)	0.10 (0.526)	0.28 (0.071)	-0.09 (0.560)	-0.04 (0.761)			

"Gray matter fraction correlated with EDSS and cognitive function, whereas white matter fraction did not"

Gray matter atrophy correlated with disability and was more marked with disease progression: atrophy rate was 3.4-fold faster than normal in patients converting from CIS to RRMS and 14-fold faster in patients converting to SPMS

Fisniku LK et al. Gray matter atrophy is related to long term disability in MS. Ann Neurol. 2008;64:247-54 Fisher E, et al. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64:255-65

Brain atrophy

Sämann PG et al. Brain volume and diffusion markers as predictors of disability and short-term disease evolution in multiple sclerosis. AJNR Am J Neuroradiol 2012;33:1356-62

Spinal cord atrophy

31. Schlaeger R, et al. Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol. 2014;76:568-580

Corpus callosum atrophy

 TABLE II. White matter regions showing a significant association between lower baseline FA

 and neuropsychological scores at 5 years

Clinical and neuropsychological score at follow-up	No. of voxels per significant white matter cluster	MNI Atlas coordinates <i>x</i> , <i>y</i> , <i>z</i>	Significant regions	P value
Immediate Story Recall Test	6025	106, 82, 80	Splenium of CC	P = 0.003
-	1084	74, 171, 59	Anterior part of genu of CC	
Delayed Story Recall Test	4471	105, 84, 80	Splenium of CC	P = 0.003
	2466	69, 173, 71	Anterior part of right thalamic radiation and genu of CC	
	651	103, 112, 105	Body of CC	
Symbol Digit Modalities Test	2265	94, 104, 97	Body of CC	P = 0.05
, ,	86	99, 84, 86	Splenium of CC	
Hayling Sentence Completion Task	1065	76, 161, 84	Genu of CC	P = 0.003
	873	56, 80, 102	Right posterior corona radiata	
	456	107, 71, 121	Left posterior corona radiata	
	243	91, 135, 95	Body of CC	
	177	78, 122, 100	Body of CC	

Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five year

Deep GM atrophy (thalamus, putamen, hippocampus)

Table 3: Univariate logistic regression analysis of the predictive value of thalamic volumetry and DTI findings from the GM with and without the thalamus for patients with EDSS scores worsening during 5 years (dependent variable) ^a						
Independent Variables	Units	OR (95% CI)	P Values			
Baseline NTV	1 mL	1.25 (0.63-2.45)	.53			
Baseline thalamic FA	0.01	0.99 (0.97-1.02)	.57			
Baseline thalamic MD	0.01 mm ² /s × 10 ⁻³	1.02 (0.98-1.06)	.40			
Average NTV thalamic volume change	1%	1.00 (0.91-1.11)	.94			
Average thalamic FA change	1%	0.87 (0.77-0.97)	.01			
Average thalamic MD change	1%	1.04 (0.97-1.11)	.27			
Thatamic lesions	n.a.	1.06 (0.66-1.68)	.82			
Change in thalamic lesions	Yes vs no	2.23 (0.40-12.5)	.36			
Baseline GM without the thalami FA	0.01	1.02 (0.99-1.06)	.22			
Baseline GM without the thalami MD	0.01 mm ² /s ×10 ⁻³	1.14 (1.02-1.27)	.019			
Average GM without the thalami FA change	1%	0.99 (0.93-1.05)	.63			
Average GM without the thalami MD change	1%	1.03 (0.92-1.15)	.64			

"Short-term accrual of thalamic damage predicts the long-term accumulation of disability in PPMS"

Hutchens MK et al. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007;69:1212-23

PPMS

38. Mesaros S, et al. Thalamic damage predicts the evolution of primaryprogressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol. 2011;32:1016-20

(A) Baseline DGM volume, but not baseline lobar cortical grey matter or

"Deep GM volume loss drives disability accumulation in MS, and temporal cortical GM shows accelerated atrophy in SPMS than RRMS"

Eshaghi A, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. 2018;83:210-22

Smoldering chronic active lesions with darkened rims

Patient group 1 (no detectable paramagnetic rims)
T2' phase T2' phase to the top to the top to the top
Patient group 2 (1-3 rims)
T2' phase ph
Patient group 3 (≥ 4 rims)
T2" phase T2" phase phas

	Spearman Correlation			
	Coefficients			
	EDSS			
	р	r		
Log lesion volume	<0.0001	0.423		
Log rim-lesion volume	0.0003	0.270		
Log number of rim lesions	0.0005	0.248		
Normalized brain volume	0.59	0.041		
Normalized cortex volume	0.12	-0.120		
Normalized WM volume	0.0007	-0.256		
Normalized thalamus volume	<0.0001	-0.336		
Normalized caudate volume	<0.0001	-0.344		
Normalized putamen volume	0.09	-0.128		
Normalized ventricular CSF volume	<0.0001	0.369		
Normalized sulcal CSF volume	0.0003	0.270		

Absinta M et al. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol 2019 Aug 12

Optical Coherence Tomography

"Cross-sectional and longitudinal monitoring of pRNFL is useful as a biomarker for prediction of physical and cognitive disability progression in patients with RRMS in everyday clinical practice"

Imaging factors

- T2 lesion count and volume in the first 5 years²⁷⁻²⁹
- Location: Cortical, posterior fossa or spinal cord³⁰⁻³²
- Gray matter involvement and atrophy^{33,34}
- Atrophy: Thalamus, spinal cord, CC, brain^{31,35-41}
- Gd enhancement⁴²
- Chronic black holes⁴⁴
- OCT^{45,46}

CSF/Serum biomarkers

- OCB (IgM>IgG)^{29,47}
- Neurofilament light chain (NFL)⁴⁸ (also in serum)⁴⁹
- Chitinase-3-like 1 (CHI3L1)⁵⁰ inflammatory markers (cytokines, chemokines, MMPs...) of T cells, B cells, monocytes^{47,51}
- Other: NO, GFAP, BDNF, anti-viral Ab's...⁴⁷

The clinical utility of CSF biomarkers in everyday practice is not well established

Neurofilament light chain (NfL)

"CSF levels of NfL at the time of diagnosis seems to be an early predictive biomarker of longterm clinical outcome and conversion from RRMS to SPMS" "NfL and OCBs are prognostic biomarkers in RIS and predict conversion to CIS and MS" "Elevated sNfL was associated with poorer neurologic function and diabetes"

Bhan A et al. MSJ 2018;24:1301-7

Crnošija L et al. Evoked potentials can predict future disability in people with clinically isolated syndrome. J Neurol 2019

Σ(s-P100, s-CMCT _{UE} , s-CMCT _{LE} , s-N13-N20, s-N22-P40) _{T1} versus EDSS _{T7} 0.70 Number of pathological EP results _{T1} versus EDSS _{T7} 0.71 ΔΣ(s-P100, s-CMCT _{UE} , s-CMCT _{LE} , s-N13-N20, s-N22-P40) _{T7-T1} versus ΔEDSS _{T7-T1} 0.51	<0.001
Number of pathological EP results _{T1} versus EDSS _{T7} 0.71 $\Delta\Sigma$ (s-P100, s-CMCT _{UE} , s-CMCT _{LE} , s-N13-N20, s-N22-P40) _{T7-T1} versus Δ EDSS _{T7-T1} 0.51	
$\Delta\Sigma$ (s-P100, s-CMCT _{UE} , s-CMCT _{LE} , s-N13-N20, s-N22-P40) _{T7-T1} versus Δ EDSS _{T7-T1} 0.51	<0.001
	0.001
Δ Number of pathological EP results _{17-T1} versus Δ EDSS _{17-T1} 0.34	0.035
Σ(s-P100, s-CMCT _{UE} , s-N13-N20, s-N22-P40) _{T1} versus ΔEDSS _{T7-T1} 0.35	0.017
Number of pathological EP results ₁₁ versus ΔEDSS ₁₇₋₁₁ 0.35	0.016
EDSS _{T1} versus ΔEDSS _{T7-T1} 0.22	0.144

52. Schlaeger R, et al. **Combined evoked potentials as markers and predictors of disability in early multiple sclerosis.** Clin Neurophysiol. 2012;123:406-410

Genomic factors

- HLA genotypes³
 - HLA-DRB1, DRB*07, DRB*44, DQB1*0301,-DQB1*0302, DQB1*0602, and-DQB1*0603^{53,54}
- NLRP3 and NLRC4 (inflammasome components) variants⁵⁵
- Other MS susceptibility polymorphisms⁵⁶

Risk of MS and disability accumulation after CIS

CDMS Multivariate analysis

Time since first attack

29. Tintore M et al. **Defining high, medium and low impact prognostic factors for developing multiple sclerosis.** Brain 2015;138(Pt 7):1863-74

Making treatment decisions⁵⁷

I. Define your treatment goals T2T: Treat to Target

Gd=gadolinium; MRI=magnetic resonance imaging

1. IFNB MS Study Group. *Neurology* 1993;43:655-61; 2. PRISMS Study Group. *Lancet* 1998;352:1498-504; 3. Kappos L et al. *N Engl J Med* 2010;362:387-401;

4. Cohen JA et al. Lancet 2012;380:1819-28; 5. Coles AJ et al. Lancet 2012;380:1829-39; 6. O'Connor P et al. N Engl J Med 2011;365:1293-303.

II. Determine the risk of your patient Factors at disease onset associated with poor prognosis

Epidemiolog	Envioronmental	Clinical	Paraclinical/	Imaging
ic	/ Life Style		Biologic	
Age at onset>40	EBV infection	Type (motor, cerebellar, sphincter or cognitive) and no. of systems involved	IgG or IgM OCB (CSF)	Location: Intracortical, posterior fossa or spinal cord lesions
Gender (male)	Low Vit. D	Topography: cerebellum, brainstem, spinal cord	Biomarkers (CSF, blood CHI3L1, neurofilament)	High lesion load
Ethnic origin (Asian or African)	Smoking	Polyregional (multifocal) symptoms	Abnormal evoked potentials	Contrast enhancement
Latitide (?)	Obesity	Partial or no recovery from initial attacks	Genomic factors (e.g. ApoE4, HLA-DRB1*15)	Brain, thalamic or spinal cord atrophy
Ageing	Diet (e.g. high salt, sweetened drinks, mediterranean)	Frequent attacks during the first years	Inflammatory markers in CSF	Smoldering chronic active lesions with darkened rims
	Organic solvents	Short interval between the first two attacks	High plasma ceramides	Chronic T1 black holes
	CMV infection (\uparrow in the ME, \downarrow in Europe)	Rapid disability progression during the first years		Cortical pathology
	Exercise (protective)	Progressive dis. from onset		Gray matter damage
	Sun exposure	NEDA status		OCT
	Alcohol, coffee, fish,	Cognitive impairment,		
	oral tobacco (protect.)	Depression		
	Microbiome	Fatigue		
	Night Work			
		vascular risk factors		

Risk Calculator?

Total Risk Score	Risk Level
0 -5	Low
6 - 10	Moderate
11 -15	High
16 -20	Very High
≥ 21	Extreme

Tailoring initial treatment

 Prognostic factors can help determine likely outcomes and guide treatment decisions

Multiple poor prognostic factors: More likely to do poorly, likely greater benefit from high efficacy therapy

All other patients: Patient and clinician choice after weighing potential risks and benefits Few poor prognostic factors and/or positive prognostic factors: More likely to do well, potentially less accepting of 'risk' with high-efficacy therapy

 In clinical practice, it can be difficult to identify patients not at the extremes

III. Consider additional factors

- Efficacy
- Safety
- Tolerability
- Clinical or MRI disease activity
- Cognitive dysfunction
- Response to previous DMTs
- Drug properties, metabolism, MoA
- Comorbidities
- Concomitant medications
- Current immunity or immunization status
- Previous immunosuppressive therapy
- Monitoring

- Adherence to treatment and monitoring
- Physician experience
- Patient's preferences

 (convenience, route and frequency of administration, side effects, individual tolerability)
- Patient's expectations
- Patient's life style
- Childbearing potential, pregnancy and family planning
- Cost
- Treatment access and logistics
- Regulatory status
- Social and family support systems

IV. Select a treatment strategy

Escalation therapy

- Standard but "failure-based" approach
- Appropriate for patients with inactive disease, good prognostic factors
- High-quality supportive evidence is limited
- Questions: definition of treatment failure, sequence of escalation, washout, additive risks of immunosuppression

Induction therapy

- Appropriate for highly active patients or those with poor prognostic factors at disease onset
- Short course may improve risk-benefit ratio
- Long-term benefit still unclear

Combination therapy

- Limited evidence
- Future strategy?

Milo R. Expert Opin Pharmacother 2015

V. Assess Benefit/Risk ratio

VI. Share decisions, Monitor and assess for disease activity/treatment failure

"If it weren't for the great variability of individuals, medicine might as well be a science and not an art" Sir William osler, M.D. 1892

Conclusions

- MS is highly variable and unpredictable, however, several factors have emerged as predictive of the course and prognosis of the disease
- Some genetic and environmental risk factors that affect the likelihood of developing MS may also predict its course
- There are multiple epidemiological, environmental, clinical, imaging and biological prognostic factors to be considered
- Prognostic factors are important for decision making and selecting the most appropriate treatment for the individual patient with MS

Ashkelon

References

- 1. Harirchian MH, et al. Worldwide prevalence of familial multiple sclerosis: a systematic review and meta-analysis. *Mult Scler Relat Disord.* 2018;20:43-47. <u>Abstract</u>
- 2. Hillert J. Human leukocyte antigen studies in multiple sclerosis. *Ann Neurol.* 1994;36 Suppl:S15-7. <u>Abstract</u>
- 3. International Multiple Sclerosis Genetics Consortium; Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019;365:eaav7188. <u>Abstract</u>
- National Multiple Sclerosis Society. What causes MS? <u>https://bit.ly/2Gptdme (</u>Accessed August-24-2019)
- 5. Rothhammer V, Quintana FJ. Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol. 2016;43:46-53. <u>Abstract</u>
- 6. Milo R, Kahana E: Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun Rev 2010;9:A387-94. <u>Abstract</u>
- Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13(12 Suppl):3-9. <u>Abstract</u>
- Weinshenker BG, et al. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. *Brain*. 1991;114:1045-1056. <u>Abstract</u>
- 9. Confavreux C, et al. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. *Brain*. 2003;126:770-782. <u>Abstract</u>
- 10. D'hooghe MB, et al. Long-term effects of childbirth in MS. *J Neurol Neurosurg Psychiatry*. 2010;81:38-41. <u>Abstract</u>

- 11. Sena A, et al. Oral contraceptive use and clinical outcomes in patients with multiple sclerosis. *J Neurol Sci.* 2012;317:47-51. <u>Abstract</u>
- 12. Kitsos D, et al. Influence of sex hormone ratios on the clinical course of multiple sclerosis: a case study. *Neurology*. 2013;80 (Meeting Abstracts 1):P02.131.
- 13. Zhang P & al. The risk of smoking on multiple sclerosis: a meta-analysis based on 20,626 cases from case-control and cohort studies. Peerj. 2016;4:e1797. <u>Abstract</u>
- 14. Horakova D et al. Environmental factors associated with disease progression after the first demyelinating event: results from the multi-center SET study. PLoS One 2013;8:e53996
- 15. Manouchehrinia A, et al. Tobacco smoking and disability progression in multiple sclerosis: United Kingdom cohort study. *Brain*. 2013;136(Pt 7):2298-2304. <u>Abstract</u>
- 16. D'hooghe MB, et al. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. *Eur J Neurol*. 2012;19:616-624. <u>Abstract</u>
- Bergamaschi B. Prognostic factors in multiple sclerosis. Int Rev Neurobiol. 2007;79:423-447. <u>Abstract</u>
- 18. Degenhardt A, et al. Clinical prognostic factors in multiple sclerosis: a natural history review. *Nat Rev Neurol.* 2009;5:672-682. <u>Abstract</u>
- 19. Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twentyfive years of follow-up. *Brain*. 1993;116:117-134. <u>Abstract</u>
- Langer-Gould A, et al. Clinical and demographic predictors of long-term disability in patients with relapsing-remitting multiple sclerosis. A systematic review. *Arch Neurol.* 2006;63:1686-1691. <u>Abstract</u>
- 21. Novotna M, et al. Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis. *Neurology*. 2015;85:722-729. <u>Abstract</u>
- 22. Weinshenker BGet al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. *Brain.* 1989;112:1419-1428. <u>Abstract</u>

- 23. Binquet C, et al. The prognostic value of initial relapses on the evolution of disability in patients with relapsing-remitting multiple sclerosis. *Neuroepidemiology*. 2006;27:45-54. <u>Abstract</u>
- 24. Tremlett H, et al. Impact of multiple sclerosis relapses on progression diminishes with time. *Neurology*. 2009;73:1616-1623. <u>Abstract</u>
- 25. Confavreaux C, et al. Relapses and progression of disability in multiple sclerosis. *N Engl J Med.* 2000;343:1430-1438. <u>Abstract</u>
- 26. Bsteh G, et al. Long term clinical prognostic factors in relapsing-remitting multiple sclerosis: insights from a 10-year observational study. *PLoS One*. 2016;11:e0158978. <u>Abstract</u>
- 27. Fisniku LK, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. *Brain.* 2008;131:808-817. <u>Abstract</u>
- 28. Brex PA, et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. *N Engl J Med*. 2002;346:158-164. <u>Abstract</u>
- 29. Tintore M, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015;138(Pt 7):1863-1874. <u>Abstract</u>
- Lavorgna L, Bonavita S, Ippolito D, et al. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. *Mult Scler*. 2014;20:220-226. <u>Abstract</u>
- 31. Schlaeger R, et al. Spinal cord gray matter atrophy correlates with multiple sclerosis disability. *Ann Neurol.* 2014;76:568-580. <u>Abstract</u>
- 32. Calabrese M, et al. Low degree of cortical pathology is associated with benign course of multiple sclerosis. *Mult Scler*. 2013;19:904-911. <u>Abstract</u>
- 33. Moccia M, et al. Grey: white matter ratio at diagnosis and the risk of 10-year multiple sclerosis progression. *Eur J Neurol*. 2017;24:195-204. <u>Abstract</u>
- 34. Filippi M, et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. *Neurology*. 2013;81:1759-1767. <u>Abstract</u>
- 35. Popescu V, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. *J Neurol Neurosurg Psychiatry*. 2013;84:1082-1091. <u>Abstract</u>

- 36. Bodini B, et al. Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five years. *Hum Brain Mapp.* 2013;34:1163-1172. <u>Abstract</u>
- 37. Sämann PG, et al. Brain volume and diffusion markers as predictors of disability and short-term disease evolution in multiple sclerosis. *AJNR Am J Neuroradiol*. 2012;33:1356-1362. <u>Abstract</u>
- 38. Mesaros S, et al. Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol. 2011;32:1016-20. <u>Abstract</u>
- 39. Neema M, et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J Neuroimaging. 2009 Jan;19(1):3-8. <u>Abstract</u>
- 40. Kalincik T, et al. Volumetric MRI markers and predictors of disease activity in early multiple sclerosis: a longitudinal cohort study. PLoS One. 2012;7(11):e50101. <u>Abstract</u>
- 41. Huber SJ, et al. Magnetic resonance imaging and clinical correlations in multiple sclerosis. J Neurol Sci. 1988;86:1-12. <u>Abstract</u>
- 42. Losseff NA, et al. The predictive value of gadolinium enhancement for long term disability in relapsing-remitting multiple sclerosis--preliminary results. Mult Scler. 2001;7(1):23-5. <u>Abstract</u>
- 43. Goodin DS, et al. Predictive validity of NEDA in the 16- and 21-year follow-up from the pivotal trial of interferon beta-1b. Mult Scler. 2019;25:837-847. <u>Abstract</u>
- Fernández O. Integrating the tools for an individualized prognosis in multiple sclerosis. J Neurol Sci. 2013;331(1-2):10-3. <u>Abstract</u>
- 45. Saidha S, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011;134(Pt 2):518–533. <u>Abstract</u>
- 46. Gordon-Lipkin E, Calabresi PA. Optical coherence tomography: A quantitative tool to measure neurodegeneration and facilitate testing of novel treatments for tissue protection in multiple sclerosis. J Neuroimmunol. 2017;304:93-96. <u>Abstract</u>
- 47. Comabella M, Montalban X. Body fluid biomarkers in multiple sclerosis. *Lancet Neurol*. 2014;13:113-126. <u>Abstract</u>

- Håkansson I, et al. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. *Eur J Neurol.* 2017;24:703-712. <u>Abstract</u>
- 49. Kuhle J, et al. Serum neurofilament is associated with progression of brain atrophy and disability in early MS. *Neurology.* 2017;88:826-831. <u>Abstract</u>
- 50. Møllgaard M, et al. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur J Neurol. 2016;23:898-905. <u>Abstract</u>
- 51. Calabrese M, et al. Intrathecal inflammatory profile predicts disease course in Multiple Sclerosis. ECTRIMS 2019
- 52. Schlaeger R, et al. Combined evoked potentials as markers and predictors of disability in early multiple sclerosis. *Clin Neurophysiol*. 2012;123:406-410. <u>Abstract</u>
- 53. Lysandropoulos AP, et al. HLA genotype as a marker of multiple sclerosis prognosis: A pilot study. J Neurol Sci. 2017;375:348-354. <u>Abstract</u>
- 54. Zivadinov R, Uxa L, Bratina A, et al. HLA-DRB1*1501,-DQB1*0301,-DQB1*0302,-DQB1*0602, and-DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. *Int Rev Neurobiol*. 2007;79:521-535. <u>Abstract</u>
- 55. Soares JL, et al. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. *Mult Scler Relat Disord.* 2019;29:26-34. <u>Abstract</u>
- 56. Mowry EM, et al. Multiple sclerosis susceptibility genes: associations with relapse severity and recovery. *PLoS One.* 2013;8(10):e75416. <u>Abstract</u>
- 57. Milo R. Effectiveness of multiple sclerosis treatment with current immunomodulatory drugs. Expert Opin Pharmacother 2015;16:659-73. <u>Abstract</u>